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Several recent ion channel structures
have revealed large side portals, or

‘fenestrations’ at the interface between
their transmembrane helices that poten-
tially expose the ion conduction pathway
to the lipid core of the bilayer. In a recent
study we demonstrated that functional
activity of the TWIK-1 K2P channel is
influenced by the presence of hydropho-
bic residues deep within the inner pore.
These residues are located near the fenes-
trations in the TWIK-1 structure and
promote dewetting of the pore by form-
ing a hydrophobic barrier to ion conduc-
tion. During our previous MD
simulations, lipid tails were observed to
enter these fenestrations. In this adden-
dum to that study, we investigate lipid
contribution to the dewetting process.
Our results demonstrate that lipid tails
from both the upper and lower leaflets
can occupy the fenestrations and partially
penetrate into the pore. The lipid tails do
not sterically occlude the pore, but there
is an inverse correlation between the
presence of water within the hydrophobic
barrier and the number of lipids tails
within the lining of the pore. However,
dewetting still occurs in the absence of
lipids tails, and pore hydration appears to
be determined primarily by those side-
chains lining the narrowest part of the
pore cavity.

Introduction

Ion channels are dynamic transmem-
brane proteins that reside within phospho-
lipid bilayers. Thus a full understanding of
their functional properties not only relies

upon our knowledge of the channel struc-
ture itself, but also on those interactions
which occur between the channel and its
lipid environment.1-3 There is now an
increasing body of evidence that the inter-
action of membrane lipids with many clas-
ses of transmembrane proteins, including
many ion channels, can profoundly influ-
ence their structure and function. Indeed,
recent advances in X-ray crystallography,4

mass spectrometry5 and molecular
dynamics simulations6 have now been
able to define these interactions with a
high degree of accuracy and prediction.

The overall structural organization of
most ion channels means that the sites
which interact with membrane lipids typi-
cally reside on the outer surfaces of the
protein. However, recent structures of sev-
eral sodium and potassium channels have
revealed relatively large side portals or
‘fenestrations’ between the transmem-
brane helices of these proteins.7-9 These
fenestrations connect the transmembrane
pore to the lipid bilayer. In the case of the
voltage-gated sodium channel the fenes-
trations are thought to be important for
the access of lipophilic molecules such as
local anesthetics into the ion conduction
pathway.9-11

Fenestrations are also present in crystal
structures of the K2P (KCNK) family of
potassium channels.7,8,12 These channels
contain 2 pore domains per subunit and
assemble as dimers to form a pseudo-
tetrameric KC channel pore, thereby
resembling other (tetrameric) potassium
channels.13 However, unlike most tetra-
meric KC channels they are not thought
to gate via constriction of a cytoplasmic
bundle-crossing gate.14-17 The 2 pore-
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lining helices (M2 and M4) are different
in sequence and asymmetrical in their
architecture. This asymmetry results in a
gap at their interface that potentially
exposes the central ion conduction pathway
to the hydrophobic core of the lipid bilayer.
Furthermore, in the crystal structure of
TWIK-1, 2 tubular regions of electron den-
sity within the inner pore were attributed to
alkyl chains, and it was proposed that these
might represent co-purified lipids.8 This
led to a hypothesis that lipid tails within
this section of the inner pore of the related
TRAAK channel might be involved in
channel gating via their insertion into the
fenestrations and steric obstruction of the
ion conduction pathway.18 It was suggested
that movement of lipid tails within the fen-
estrations might represent a mechanism for
the direct sensing of mechanical tension in
stretch-activated K2P channels.18

In order to understand the dynamic
structural behavior of the TWIK-1 channel
we recently performed molecular dynamics
simulations of the TWIK-1 crystal struc-
ture in a phospholipid bilayer.19 Interest-
ingly, we observed that the inner pore of
the channel was highly hydrophobic, and
therefore prone to dewetting which creates
a hydrophobic barrier within the ion con-
duction pathway.20 The hydrophobic ‘cuff’
which forms this energetic barrier is com-
prised of leucine sidechains. We found
that substitution of these residues with
isosteric polar side-chains not only resulted
in full wetting of the pore in silico, but also
correlated with increased functional activ-
ity of the channel.19

We also reported that the fenestrations
in TWIK-1 were dynamic and capable of
closing during our simulations, but that
when the fenestrations were open, the
alkyl tails of the surrounding phospho-
lipid bilayer were able to enter the fenes-
trations, though not far enough to
sterically occlude the inner pore.19 Inter-
estingly, similar observations have been
reported for MD simulations of prokary-
otic voltage-gated sodium channel struc-
tures where it was found that lipid tails
could also penetrate the fenestrations.10,21

However, even without steric occlusion
of the inner pore, the presence of lipid
tails within the fenestrations might be
expected to contribute to the hydropho-
bicity of the TWIK-1 inner pore cavity

and so influence the dewetting process.
Therefore, to investigate the contribution
of the surrounding lipids to the hydropho-
bic barrier in the TWIK-1 pore, we have
now carried out longer simulations of
TWIK-1 in a POPC lipid bilayer. Here
we describe the dynamics of the interac-
tions between the channel protein, mem-
brane lipids, and the hydrophobic barrier.

Results and Discussion

Two distinct fenestrations within
TWIK-1

Molecular surface representations of
the TWIK-1 crystal structure reveal that
the fenestration at the interface between
subunits can be divided into 2 distinct
regions we term the ‘upper’ and ‘lower’
fenestrations (Fig. 1A). This division is
formed by the side chains of L146 on M2
and L264 on M4 (Fig. 1B). Interestingly
these residues, along with L261, contrib-
ute to the hydrophobic cuff that promotes
dewetting of the inner pore.19 The upper
fenestration is at the interface of the M2/
M4 helices and is above the hydrophobic
cuff. Tubular electron density was
resolved in the crystal structure. This is
thought to represent two 11-carbon alkyl
chains penetrating the upper fenestrations
and inner pore, (Fig. 1B, C).8 The lower
fenestration is between the hydrophobic
cuff and the C-helix at the cytoplasmic
entrance to the pore (Fig. 1A, B).

The TWIK-1 structure was embedded
in a POPC (1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine) bilayer and 2
simulations run, each for 200 ns. In our
previous study we observed dewetting of
the inner pore irrespective of whether the
backbone was restrained or not.19 There-
fore, to ensure the fenestrations remained
open and accessible throughout the simu-
lations, a positional restraint was imposed
on the Ca-atoms of the protein backbone.
POPC was chosen because it represents a
typical phospholipid containing both a
saturated (palmitoyl, C16:0) and an
unsaturated (oleoyl, C18:1) alkyl tail, and
is routinely used for MD simulations of
membrane proteins.

Interestingly, we found that through-
out these simulations the upper fenestra-
tion was located at approximately the

center of the bilayer. Consequently, tails
of POPC lipids from both the inner and
the outer-leaflet were able to line the sub-
unit interface and upper fenestration, but
were not long enough to fully penetrate
and occlude the inner cavity (Fig. 1C).
This suggests that direct lipid block of the
inner pore is unlikely. However, some
mammalian saturated phospholipids have
tails up to 24 carbons in length,22 and it
remains possible that such longer phos-
pholipid tails might penetrate further
through the upper fenestration. It is inter-
esting to note that the TWIK-1 crystal
structure was solved using protein isolated
from Pichia pastoris and that yeast contain
very long (26:0) phosphosphingo-
lipids.22,23

In marked contrast however, the
lower fenestration is located near the
middle of the inner leaflet, making it a
more accessible portal for lipid tail entry
(Fig. 1A, C). We observed that lipids
tails from the inner leaflet occupied the
lower fenestrations throughout the entire
duration of the 200 ns simulation. Both
the unsaturated oleoyl and the saturated
palmitoyl lipid tails of POPC were able
to occupy this fenestration. Lipid tails
were capable of entering the inner cavity
just below the hydrophobic cuff. How-
ever, they did not penetrate far enough
to occlude the ion conduction pathway
(Fig. 1D).

Influence of lipids on the hydrophobic
barrier

Our previous study demonstrated that
dewetting of the hydrophobic barrier deep
within the inner pore of TWIK was
dependent upon the relative hydrophobic-
ity of the surface lining the pore.19 Conse-
quently, if the alkyl tails of the lipids are
capable of entering the fenestrations and
penetrating into the cavity then it might
be anticipated that they could also influ-
ence the hydrophobic barrier in TWIK-1.
We therefore next examined the correla-
tion between the presence of such lipid
tails and the behavior of water within the
hydrophobic cuff.

Consistent with our previous studies,
we observed dewetting of the hydrophobic
inner pore of TWIK-1 within the first few
nanoseconds of the simulation and this
was concurrent with lipid tails entering
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the fenestration and thereby forming part
of the lining of the pore (Fig. 2A and B).
We also observed liquid-vapor transitions
and fluctuating lipid penetration into the

pore lining throughout the simulations
(Fig. 2A and B).

We next compared the number of
water molecules within the hydrophobic

cuff, with the number of lipid carbon
atoms present in the pore and its lining
(Fig. 2B). Although both processes were
subject to fluctuations, their time series

Figure 1. Interaction of lipids with the fenestrations of TWIK-1. (A) (left) Molecular surface representation of TWIK-1 crystal structure subunit interface
shows 2 distinct gaps, termed upper and lower fenestrations. The channel is colored by subunit, with cyan HOLE surface depicting the ion conduction
pathway. (right) Cartoon representation of the TWIK-1 crystal structure with side chain atoms of L146, L264 and L261 of the hydrophobic-cuff shown as
black spheres. The upper fenestration is at the interface of pore-lining helices at the subunit interface, electron density attributed to alkyl chains (yellow)
was found below selectivity filter (purple KC ions) and above the hydrophobic cuff, whereas the lower fenestration is below the hydrophobic cuff. (B) A
bottom up view of the inner-pore of the TWIK-1 crystal structure shows that the alkyl chains found inside the upper fenestrations block the ion conduc-
tion pathway. (C) Relative position of the POPC lipids on the subunit interface of TWIK-1 at the end of a 200ns MD simulation of the channel embedded
in a POPC bilayer. TWIK-1 is shown as in A; Carbons atoms of POPC are colored yellow, oxygen red and nitrogen blue. Phosphorus atoms of the bilayer
lipids are shown as spheres and colored orange for orientation. The upper fenestration is approximately at the center of the bilayer, and lipid tails from
both the upper and lower leaflet can approach the upper fenestration, but do not penetrate the cavity. By contrast, lipid tails fully occupy the lower fen-
estrations. (D) A bottom up view of the pore at the end of the MD simulation showing lipid tails from the lower leaflet occupying both of the lower fenes-
trations, with one lipid tail penetrating the pore.
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suggests some correlation between dewet-
ting of the hydrophobic barrier and the
presence of lipid tails exposed to the pore.
We therefore generated a correlation heat-
map; this shows that although dewetting
can occur when lipids are completely
absent from the cavity, the highest
instance of dewetting occurs when 2 or 3
lipid tail carbons are present in the
mouths of the fenestrations which line the
central cavity (Fig. 2C).

Our previous study demonstrated that
dewetting of the cavity was profoundly
influenced by the hydrophobicity of resi-
dues within the hydrophobic cuff. For
example, the L146N mutation was found
to induce full hydration of the inner cav-
ity.19 We therefore examined 2 identical
simulations of the L146N mutant channel

structure. Interestingly, we observed that
during the first 60 ns of the simulation up
to 12 lipid carbon atoms penetrated into
the cavity of the L146N mutant, but the
cavity remained hydrated throughout the
entire simulation (Fig. 2D, E). Further-
more, we found a decrease in the percent
occupancy of carbons in the pore (35%
for the L146N mutant vs 55% for WT in
two 200ns simulations) (Fig. 2F). There-
fore, polar substitutions in the hydropho-
bic cuff not only prevent dewetting of the
cavity, but also decrease the overall occu-
pancy of lipids.

In summary, these simulations demon-
strate that the terminal carbons of the sur-
rounding lipids can penetrate the
fenestrations of TWIK-1 and contribute
to the lining of the inner cavity, but not

far enough to sterically occlude the pore.
The presence of lipids within the fenestra-
tions also influences the relative hydro-
phobicity of the surface lining the inner
pore, and dewetting occurs most fre-
quently when lipid tails line the cavity.
However, dewetting still occurs in the
absence of such lipid tails, and it is the rel-
ative hydrophobicity of residues at the
narrowest constriction point (i.e. the
hydrophobic barrier) that primarily deter-
mines the hydration status of the inner
pore.

Future simulations with more physio-
logical lipid head-group compositions,
and mixed lipid tail length are clearly
needed to fully understand the behavior of
TWIK-1 and other K2P channels in com-
plex bilayers. Hydrophobic lipid tails

Figure 2. Influence of lipid tails in the ion conduction pathway of TWIK-1. (A) Average water density from a 200ns simulation inside the TWIK-1 ion con-
duction pathway. Snapshots (taken every 1ns) of lipid residues lining the pore, as well as the snapshots of the L146 and L264 sidechains from both subu-
nits, are depicted as ball and sticks. Lipid carbon atoms lining and entering the pore (as defined by the green box) are colored green, whereas carbons
outside of the lining are colored yellow. Carbons of the L146 and L264 side-chains are shown in black. Black dashes indicate the region within the green
box used to count the number of waters within the hydrophobic cuff. The selectivity filter containing purple KC ions and C-helix at the start of the simula-
tion are shown for orientation. (B) Number of water molecules within the hydrophobic cuff (black) taken every 0.1 ns during a 200 ns MD simulation.
Also shown are the number of lipidic carbon atoms (green) which enter the pore cavity as defined by the green box in panel A. (C) Correlation heat map
for the 2 traces shown in panel B. Data shown as percent of time. (D–F) As above but for the L146N mutant channel. Oxygen and nitrogen atoms colored
red and blue respectively.
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might still regulate TWIK-1 channel
activity by influencing this hydrophobic
barrier. However, only long lipid tails
(e.g. �24 carbon22) might be able to
directly occlude the inner pore. TREK-1
and TRAAK channels retain their mecha-
nosensitivity when reconstituted into a
bilayer consisting primarily of 16 and 18
carbon lipid chains.24 Therefore, mecha-
nogating by dynamic modulation of a
lipid block within the conduction path-
way appears unlikely. Nevertheless, it
remains possible that the presence of lipid
tails within the fenestrations might influ-
ence the biophysical properties of ion con-
duction, as well as more global
conformational changes involving move-
ment of the transmembrane helices and
closure of the fenestrations.12,25

In complex cellular membranes, K2P
channel function is clearly affected by
the composition of the surrounding
lipids,26-28 and lipid composition can
vary dramatically between different
intracellular organelles.23 It is therefore
possible that the interaction of different
physiological lipids, and even lipophilic
drugs with these fenestrations remains a
potential mechanism for the control of
K2P channel activity.

Methods

Molecular dynamics simulations were
similar to those described previously.19

Briefly, missing atoms and loops were
modeled into the TWIK-1 crystal struc-
ture (PDBID: 3UKM).8 To embed the
protein into a bilayer, the structure was
converted into coarse grain representation
(Martini v2.1) and embedded into a
POPC bilayer by running coarse grain
self-assembly and equilibration simula-
tions for 500 ns. The resultant protein
embedded in a bilayer containing 212
POPC lipids was then converted into
atomistic structure using the CG2AT
method.29,30 Atomistic simulations
reported here employed GROMOS 53A6
with SPC water and 150 mM KCl. KC

ions were placed at positions S2 and S4 in
the selectivity filter with an additional ion
in the inner pore. Two water molecules
were also added to the filter at the S1 and
S3 positions. Then 200 ns equilibration

simulations were run at constant pressure
(1 atm) and temperature (310K) with Ca
atoms of the protein restrained with
spring constant of 10 KJ mol¡1 A

� ¡2. The
simulations were repeated by randomizing
the initial velocity to obtain two 200 ns
simulations for TWIK-1 WT protein.
Two additional 200 ns simulations were
run for the L146N in-silico mutant, where
both of the L146 residues of the dimer
were mutated to asparagine using pyMOL
mutagenesis script on the initial TWIK-1
WT system. HOLE radius profiles were
generated using MD analysis and
HOLE.31 Average water density maps
were generated by using the Volmap
plugin tool with 3-dimensional grids every
0.5 A

�
for each simulation. The maps were

then normalized to bulk water density and
visualized at an isovalue of 0.5. Water
occupancy at the hydrophobic constric-
tion was analyzed by counting the number
of water oxygen atoms in a box of 20 £
20 £ 5 A

�
located ¡5 A

�
<z<¡10 A

�
below

the S4 ion binding site (Thr117 and
Thr225, which define the 0 A

�
position on

the z-axis, whereas the number of carbon
atoms were counted in a box 20 £ 20 £
20 A

�
below the S4 ion binding site using

vmd tcl script.
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