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A touching case of channel regulation: the ATP-sensitive
K+ channel
Stephen J Tucker and Frances M Ashcroft∗

The classical type of KATP channel is an octameric (4:4)
complex of two structurally unrelated subunits, Kir6.2
and SUR. The former serves as an ATP-inhibitable pore,
while SUR is a regulatory subunit endowing sensitivity
to sulphonylurea and K+ channel opener drugs, and the
potentiatory action of MgADP. Both subunits are required to
form a functional channel.
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Abbreviations
NBD nucleotide-binding domain
PHHI persistent hyperinsulinaemic hypoglycaemia of infancy
SUR sulphonylurea receptor

Introduction
Potassium channels inhibited by adenosine 5′-triphos-
phate (KATP channels) are found in a wide variety
of tissues, where their primary role is to couple cell
metabolism to electrical activity and K+ fluxes. They are
involved in the response to cerebral and cardiac ischaemia,
the regulation of vascular smooth muscle tone, epithelial
K+ transport and the electrical activity of several different
types of neurone [1–3]. However, their physiological role
is best understood in the pancreatic β-cell, where they link
changes in blood glucose concentration to insulin secretion
[4]. Under normal conditions, the KATP channel is open
and sets the β-cell resting membrane potential. Elevation
of blood glucose concentration results in increased glucose
uptake and metabolism by the β-cell. This closes the
KATP channel, producing a depolarisation that activates
voltage-gated Ca2+ channels and thereby induces a rise
in intracellular Ca2+ which stimulates insulin release.
KATP channels play a similar role in glucose-sensing in
ventromedial hypothalamic neurones. How metabolism
influences KATP channel activity remains controversial,
although it is widely believed that metabolically gener-
ated changes in adenine nucleotide concentrations are
involved, as ATP inhibits, whereas MgADP potentiates,
KATP channel activity [1–4].

This review summarises the major findings of the past
year on the relationship between KATP channel structure
and function. It is important to emphasise that KATP
channels in different tissues may have markedly different
biophysical properties, ATP sensitivity and pharmacology.

Recent studies have revealed that this diversity results
from differences in the molecular composition of KATP
channels. In this review, we focus primarily on those
KATP channels that are blocked with high affinity by ATP
(Ki 10–100 µM), activated by MgADP and MgGDP, and
modulated by many additional cytosolic factors (e.g. H+)
[1–3]. In addition, they are blocked by sulphonylurea
drugs, which are used to treat the symptoms of non-insulin
dependent diabetes mellitus, and activated by a group of
unrelated drugs collectively known as K-channel openers
[5]. We refer to these as ‘classical’ KATP channels.
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(a) Putative membrane topology of SUR1 and Kir6.2. (b) Schematic
showing the stoichiometry of the KATP channel.

Molecular identity
The first clue to the structure of the KATP channel came
from studies with glibenclamide, a sulphonylurea that
inhibits the channel at nanomolar concentrations. This
property was exploited by Aguilar-Bryan and colleagues
[6] to purify and subsequently clone a high-affinity
sulphonylurea-binding protein from β-cell membranes.
The sulphonylurea receptor they isolated (SUR1) turned
out to be a member of the ABC-transporter superfamily,
which includes the cystic fibrosis gene product (CFTR)
and the multidrug-resistance protein (MDR) [7]. These
proteins are characterised by multiple transmembrane
domains and two intracellular nucleotide-binding domains
(NBDs) (Figure 1a). The precise membrane topology is
unknown, but the most recent model suggests that the
transmembrane domains are arranged in two groups of 11
and 6 [8].
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Although initially an attractive candidate gene for the
KATP channel, expression of SUR1 produced high-affinity
sulphonylurea binding but no channel activity [6]. The
missing subunit proved to be an inwardly rectifying K+-
channel subunit, Kir6.2 (Figure 1a). Coexpression of Kir6.2
with SUR1 in both mammalian cells and Xenopus oocytes
resulted in KATP currents with properties identical to those
of the native β-cell KATP channel [9–11]. Subsequently,
a second sulphonylurea receptor (SUR2) was identified,
which is produced in two forms (SUR2A, SUR2B) as
a result of alternative splicing [12–14]. Currently, most
‘classical’ KATP channels are thought to consist of Kir6.2
in combination with an SUR subunit. Thus, cardiac
channels are composed of Kir6.2 and SUR2A [12,13],
whereas smooth muscle KATP channels may be formed
from Kir6.2 and SUR2B [13,14]. Single-cell PCR studies
have identified both SUR1/Kir6.2 and SUR2A/Kir6.2 com-
binations in different types of substantia nigra neurones,
suggesting that multiple types of KATP channel may exist
in the brain [15]. Overlapping distributions of SUR1 and
Kir6.2 have been observed in several other regions of
the brain, including the hippocampus and cerebellum
[16]. The identity of the KATP channels in ventromedial
hypothalamic neurones is, however, far from clear since
they show very different single-channel properties, ATP
sensitivity, and pharmacology to the ‘classical’ type of
KATP channel [17,18].

The question of whether other Kir subunits can couple
functionally to SUR to form ATP-sensitive K+ channels
has also received attention. Recent experiments suggest
that the closely related Kir6.1 subunit associates with
SUR2B to form a MgADP-activated, but ATP-insensitive,
K+ channel [19•]. A channel with these properties is
observed in vascular smooth muscle. Coexpression of
Kir6.1 and SUR1 also produces a metabolically sensitive
K+ channel [20]: whether this channel is sensitive to ATP
has not been directly addressed. Most other Kir subunits
do not appear to couple to SUR1 [11,21••].

Although it is tempting to regard Kir6.2 as the primary
α-subunit and SUR1 as an accessory β-subunit of the
KATP channel, similar to the α- and β-subunits of
voltage-gated Na+ and K+ channels [22], this analogy is
not strictly correct. The two KATP channel subunits are
more intimately linked, as both must be coexpressed to
obtain functional channel activity [9–11]. Unlike other Kir
subunits, Kir6.2 and Kir6.1 do not show channel activity
when expressed alone.

KATP channel stoichiometry
The direct physical association of Kir6.2 and SUR1 was
demonstrated by the ability of [125I]azidoglibenclamide
to co-photolabel both SUR1 and Kir6.2, and by the pu-
rification of a high-molecular-weight complex containing
both Kir6.2 and SUR1 [21••]. Physical association of
SUR1 with Kir6.1, but not with Kir1.1 or Kir3.4, was also
observed [21••].

One question that has received much attention during
the past year has been the stoichiometry of the KATP
channel. Several groups showed that a 1:1 relative
stoichiometry was sufficient to form a functional channel
by demonstrating that a dimeric SUR1–Kir6.2 fusion
construct was capable of forming functional channels
[21••,23•,24•]. Since channel activity was reduced when
this construct was coexpressed with wild-type Kir6.2,
but was restored by supplementation with wild-type
SUR1, it appears that each Kir 6.2 subunit requires one
SUR1 subunit in order to generate a functional channel.
Additionally, because four Kir6.2 subunits are required to
form the KATP channel pore [21••,23•], this means that
the KATP channel is an octameric complex with a 4:4
stoichiometry (Figure 1b).

Which subunit does what?
The question of which KATP channel properties are
intrinsic to Kir6.2 and which are conferred by association
with SUR has been complicated by the inability to obtain
functional expression of Kir6.2 independently of the
sulphonylurea receptor. This issue has now been resolved,
using a variety of approaches. First, sulphonylurea-binding
studies showed that SUR1 endows the KATP channel with
sensitivity to these drugs [6]. Second, the very different
sensitivities of Kir6.2/SUR1 channels and Kir6.2/SUR2
channels to K-channel openers argued that K-channel
openers also interact with the SUR subunit [12,14,19•].
Third, site-directed mutations implicated the NBDs of
SUR1 in the stimulatory action of MgADP, MgGDP and
the K-channel opener diazoxide [25–28]. Finally, and most
directly, it was found that isoforms of Kir6.2, in which
either the last 26 (Kir6.2∆C26) or 36 (Kir6.2∆C36) amino
acids had been deleted, produced functional channels in
the absence of SUR1 [29••]. As predicted from earlier
studies, these channels were insensitive to sulphonylureas,
diazoxide and the potentiatory action of MgADP, but
coexpression with SUR1 restored sensitivity to these
agents. Remarkably, the truncated Kir6.2 isoforms were
also blocked by ATP (Ki ∼ 100 µM), despite the lack of an
obvious consensus motif for ATP binding in the sequence
of Kir6.2. This experiment therefore demonstrates that the
primary site for ATP inhibition does not reside on SUR1.
Figure 2 summarises the sites of interaction of the main
modulatory agents with the KATP channel.

Intrinsic properties of Kir6.2
The pore of the KATP channel appears to be composed
principally of Kir6.2 subunits, as the single-channel
conductance and rectification properties of Kir6.2∆C26
channels are identical to those of wild-type channels
[29••,30]. Moreover, mutations in this subunit affect
the rectification and gating properties of the channel
[31•]. The observations that truncated Kir6.2 isoforms are
inhibited by adenine nucelotides (ATP and ADP) and that
mutations in this subunit alter the channel ATP sensitivity,
are consistent with the hypothesis that ATP interacts
directly with Kir6.2 [29••,31•]. However, ATP-binding
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Schematic showing the sites of interaction of modulatory agents with
Kir6.2 and SUR1.

experiments are required to confirm this idea and to
exclude the possibility that ATP binds to a third subunit,
which is endogenously expressed. Imidazoline drugs such
as phentolamine appear to mediate their inhibitory effects
on the KATP channel via Kir6.2, rather than SUR1 [30].
Kir6.2∆C26 currents are also blocked by sulphonylureas,
albeit with very low affinity (Ki ∼ 100 µM for gliben-
clamide) [32•]. Although of little clinical significance, this
finding is important for interpreting experiments in which
glibenclamide is tested at high concentration, as has often
been the case in brain slice preparations.

Regulation by SUR
In addition to endowing Kir6.2 with sensitivity to sulpho-
nylureas, K-channel openers and the stimulatory action of
MgADP (and MgGDP), SUR1 also enhances the channel
open probability [30] and its sensitivity to ATP (shifting
the Ki from ∼ 100 µM to ∼ 10 µM [29••]). As yet, it is not
known which domains of SUR1 or Kir6.2 interact with
each other to transduce these effects. The binding site
for sulphonylureas and K-channel openers on SUR has
also not been identified. However, there is accumulating
evidence that the NBDs of SUR1 are involved in the
stimulation of channel activity by MgADP (and GDP).
Mutations in these domains abolish nucleotide activation
of the KATP channel [25–28] and interfere with nucleotide
binding to SUR1 [33••].

It is well established that MgADP enhances the apparent
sensitivity of the β-cell KATP channel to sulphonylureas.
Recent studies demonstrate that this effect results from
the ability of sulphonylureas to prevent the stimulatory
action of the nucleotide: this unmasks the inhibitory effect
of MgADP (mediated by interaction with Kir6.2), thereby

producing a further reduction in current amplitude [32•].
Such interactions complicate analysis of the molecular
mechanism of action of sulphonylureas.

Physiological consequences of impaired KATP
channel regulation
The physiological importance of the regulatory role of
the SUR1 subunit is demonstrated by the fact that
mutations in this subunit have been found in patients with
persistent hyperinsulinaemic hypoglycaemia of infancy
(PHHI), a serious, but rare, disorder characterised by
excessive and unregulated insulin secretion [34]. Some of
these mutations abolish the ability of MgADP to enhance
channel activity [25]. That they also prevent channel
activation in response to metabolic inhibition, supports
the idea that MgADP may provide the link between cell
metabolism and channel activity. Other PHHI mutations
cause premature truncation of SUR1, or occur in Kir6.2
[35]. Both types of mutation lead to a loss of KATP
channel activity in the intact cell, and are expected to
cause the maintained β-cell depolarisation and continuous
insulin secretion that characterises the disease. Indeed, no
KATP channel activity is observed in either cell-attached
or excised patches from PHHI β-cells [36]. It remains
unclear whether the brain damage found in some PHHI
patients results simply from the low blood glucose level
or whether it reflects the effect of PHHI mutations on
neuronal KATP channels (which may also comprise Kir6.2
and SUR1 subunits).

The effects of a loss of Kir6.2 function have also
been explored using a transgenic mouse expressing a
dominant-negative form of Kir6.2 [37]. While neonatal an-
imals display symptoms of PHHI, surprisingly, those that
survive develop hypoinsulinaemia and hyperglycaemia
when adult.

Hormonal regulation of KATP channels
One well-established property of the KATP channel is its
tissue-specific regulation by hormones and neurotransmit-
ters. This year has seen leptin added to the list of KATP
channel modulators. Leptin is the product of the ob gene,
mutations in which lead to severe obesity and diabetes
[38]. Leptin activates both the β-cell KATP channel [39•]
and that of ventromedial hypothalamic neurones [40•].
The mechanism of KATP channel activation remains to be
elucidated, but leptin is known to activate the JAK/STAT
pathway so tyrosine kinase phosphorylation is a possibility.
Whatever the mechanism, these results raise the intriguing
possibility that KATP channels may be involved in the
control of body weight.

Some native KATP channels are regulated by G proteins,
which mediate the effects of hormones and transmitters
(this regulation is distinct from the potentiatory effects
of guanine nucleotides produced by interaction with the
NBDs of SUR1). Recent studies have shown that purified
G proteins may directly modulate both Kir6.2/SUR1 and
Kir6.2/SUR2A channels [41].



ATP-sensitive K+ channels Tucker and Ashcroft 319

Novel KATP channels and sulphonylurea
receptors
Sulphonylurea receptors and sulphonylurea-sensitive KATP
channels are not only found in the plasma membrane;
they have also been reported in the membranes of
secretory granules [42,43] and mitochondria [44]. The
demonstration that Kir6.1 is expressed in mitochondria
suggests that it may be a subunit of the mitochondrial
KATP channel [45]. It is still unclear which sulphonylurea
receptor partner(s) are part of intracellular KATP channels.
However, a low-affinity sulphonylurea receptor of 65 kDa
(Kd 6 µM for glibenclamide) was recently demonstrated
in pancreatic zymogen granule membranes, and may be a
subunit of the KATP channel in these membranes [46]. In
this respect, it is interesting that a 65 kDa sulphonylurea
receptor has also been reported in β-cell membranes [47].
Finally, a protein sharing sequence homology with SUR1
was identified this year in plants [48].

Future directions
Studies during the past year have revealed that the
‘classical’ type of KATP is an octameric complex formed
by the physical association of two subunits, Kir6.2 and
SUR, which have distinct functional roles. The regions
of each subunit that participate in this interaction now
need to be identified, as does the mechanism by which
drug or nucleotide binding to SUR regulates the activity
of Kir6.2. The locations of the binding sites for drugs and
nucleotides on SUR1, and Kir6.2, also await discovery. The
ability to express truncated forms of Kir6.2 independently
of SUR1 may facilitate such studies, but given the
complex regulation of KATP channel activity, sorting out
exactly how Kir6.2 and SUR interact may take some
time. Other important avenues of research include how
the KATP channel complex is assembled, whether Kir6.x
(or SUR) subunits can form heteromultimers, and the
molecular identity of the non-classical types of KATP
channel.
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